

# TA903

## TMR FreePitch Sensor





The TA903 is a position sensor based on the Tunnel MagnetoResistive (TMR) effect. The sensor contains two Wheatstone bridges with a common ground and supply pin. They are shifted at a relative angle of 90° to one another.

A rotating magnetic field in the sensor plane delivers two sinusoidal output signals depending on the angle  $\alpha$  between sensor and magnetic field direction. The function of these signals is  $+\sin\alpha$  and  $+\cos\alpha$ .

i.e. the output signal in an end-of-shaft application has a periodicity of one per revolution.

TA903 is available as bare die on wafer, for chip-on-board processing, the sensor is available in a LGA package.

#### Quick Reference Guide

| Quick helelelice duide |                                      |      |      |      |      |
|------------------------|--------------------------------------|------|------|------|------|
| Symbol                 | Parameter                            | Min. | Тур. | Max. | Unit |
| V <sub>CC</sub>        | Supply voltage                       | 1.8  | 5.0  | 5.5  | V    |
| V <sub>out</sub>       | Output amplitude per V <sub>CC</sub> | 70   | 100  | 130  | mV/V |
| V <sub>OFF</sub>       | Offset voltage per V <sub>CC</sub>   | -3.0 | -    | +3.0 | mV/V |
| R <sub>B</sub>         | Bridge resistance                    | 6.0  | 10.0 | 14.0 | kΩ   |
| R <sub>s</sub>         | Sensor resistance                    | 3.0  | 5.0  | 7.0  | kΩ   |

#### **Features**

Based on the Tunnel MagnetoResistive (TMR) effect

TA903 Bare die

- Contains two Wheatstone bridges
- Sine and cosine output
- Temperature range from -40 °C to +125 °C

### **Advantages**

- Contactless angle and position measurement
- Large air gap
- Excellent accuracy
- Position tolerant
- Minimal offset voltage
- Minimal hysteresis

#### **Applications**

- Incremental or absolute position measurement
- Motor commutation
- Rotational speed measurement
- Angle measurement (360° absolute at end of shaft)